Honors Math 2

Law of Sines and Law of Cosines

Identify whether you would use the Law of Sines or Law of Cosines as the first step when solving the given triangle.

Find each measure. Round lengths to the nearest tenth and angle measures to the

13. $E F$

- 2 sides
- inc 2 law of cosines
$x^{2}=8.4^{2}+10.6^{2}-2(8.4)(10.6) \cos 51^{\circ}$

$$
x^{2}=\sqrt{182.92-178.08 \cos 51^{\circ}}
$$

$x^{2}=10.1^{2}+12.9^{2}-2(10.1)(12.9) \cos 112^{\circ}$
$x^{2}=\sqrt{268.42-260 \cdot 58 \cos 112^{\circ}}$
15. $\mathrm{m} \angle G \quad, 3$ sides

$5^{2}=14^{2}+13^{2}-2(14)(13) \cos x^{0}$
$25=365-364 \cos x^{\circ}$
$\frac{-340}{-364}=-364 \cos x$
$x=\cos ^{-1}\left(\frac{340}{364}\right)$
16. $\mathrm{m} \angle C$

$$
\frac{\sin x^{\circ}}{4.8}=\frac{\sin 122^{\circ}}{10.2}
$$

$$
10.2 \sin x^{\circ}=\frac{6.8 \sin 122^{\circ}}{10.2}
$$

$$
x=\sin ^{-1}\left(\frac{6.8 \sin 122^{\circ}}{10.2}\right)
$$

$\frac{\sin 135^{\circ}}{x}=\frac{\sin 17^{\circ}}{8.5}$
$8.5 \sin 135^{\circ}=x \sin 17^{\circ}$

$$
x=\frac{8.5 \sin 135^{\circ}}{\sin 17^{\circ}}
$$

$\frac{\sin 20^{\circ}}{x}=\frac{\sin 140^{\circ}}{9}$
$9 \sin 20^{\circ}=x \sin 140^{\circ}$

$$
x=\frac{9 \sin 20^{\circ}}{\sin 140^{\circ}}
$$

22. Multi-Step Three circular disks are placed next to each other as shown. The disks have radii of 2 cm , 3 cm , and 4 cm . The centers of the disks form $\triangle A B C$. Find $\mathrm{m} \angle A C B$ to the nearest degree.

3 sides: Law of cosine

$$
6^{2}=5^{2}+7^{2}-2(5)(7) \cos x^{2}
$$

$$
\begin{aligned}
& 36=74-70 \cos x^{\circ} \\
& \frac{-38}{-70}=-70 \cos x^{\circ} \\
& x=\cos ^{-1}(38 / 70)
\end{aligned}
$$

