Postulates and Theorems

Properties and Postulates

Reflexive Property	A quantity is congruent (equal) to itself. $\mathrm{a}=\mathrm{a}$
Symmetric Property	If $\mathrm{a}=\mathrm{b}$, then $\mathrm{b}=\mathrm{a}$.
Transitive Property	If $\mathrm{a}=\mathrm{b}$ and $\mathrm{b}=\mathrm{c}$, then $\mathrm{a}=\mathrm{c}$.
Addition Postulate	If equal quantities are added to equal quantities, the sums are equal.
Subtraction Postulate	If equal quantities are subtracted from equal quantities, the differences are equal.
Multiplication Postulate	If equal quantities are multiplied by equal quantities, the products are equal.
Division Postulate	If equal quantities are divided by equal nonzero quantities, the quotients are equal.
Substitution Postulate	A quantity may be substituted for its equal in any expression.
Partition Postulate	The whole is equal to the sum of its parts.
Construction	Two points determine a straight line.
Construction	From a given point on (or not on) a line, one and only one perpendicular can be drawn to the line.
Segment Addition Postulate	Point B is a point on segment $A C$, i.e. B is between A and C, if and only if $A B+B C=A C$

Angles

Angle Addition Postulate	Point C lies in the interior of $\angle A B D$, if and only if, $m\llcorner A B C+m\llcorner C B D=m\llcorner A B D$
Right Angles	All right angles are congruent.
Straight Angles	All straight angles are congruent.
Congruent Supplements	Supplements of the same angle are congruent. Supplements of congruent angles are congruent.
Congruent Complements	Complements of the same angle are congruent. Complements of congruent angles are congruent.
Linear Pair	If two angles form a linear pair, they are supplementary.
Vertical Angles	Vertical angles are congruent.
Triangle Sum	The sum of the interior angles of a triangle is 180°.
Exterior Angle	The measure of an exterior angle of a triangle is equal to the sum of the measures of the two non-adjacent interior angles.
Base Angle Theorem (Isosceles Triangle)	If two sides of a triangle are congruent, the angles opposite these sides are congruent.
Base Angle Converse (Isosceles Triangle)	If two angles of a triangle are congruent, the sides opposite these angles are congruent.

Triangle

Side-Side-Side (SSS) Congruence
Side-Angle-Side (SAS) Congruence
Angle-Side-Angle (ASA) Congruence

Angle-Angle-Side (AAS) Congruence
Hypotenuse-Leg (HL) Congruence (right triangle)

CPCTC
Angle-Angle (AA)
Similarity
SSS for Similarity
SAS for Similarity

Side Proportionality
Mid-segment Theorem (also called mid-line)

Sum of Two Sides

Longest Side

Altitude Rule

Leg Rule

Base Angle Theorem (Isosceles Triangle)

Base Angle Converse (Isosceles Triangle)

If three sides of one triangle are congruent to three sides of another triangle, then the triangles are congruent.
If two sides and the included angle of one triangle are congruent to the corresponding parts of another triangle, the triangles are congruent.

If two angles and the included side of one triangle are congruent to the corresponding parts of another triangle, the triangles are congruent.

If two angles and the non-included side of one triangle are congruent to the corresponding parts of another triangle, the triangles are congruent.
If the hypotenuse and leg of one right triangle are congruent to the corresponding parts of another right triangle, the two right triangles are congruent.

Corresponding parts of congruent triangles are congruent.
If two angles of one triangle are congruent to two angles of another triangle, the triangles are similar.

If the three sets of corresponding sides of two triangles are in proportion, the triangles are similar.
If an angle of one triangle is congruent to the corresponding angle of another triangle and the lengths of the sides including these angles are in proportion, the triangles are similar.
If two triangles are similar, the corresponding sides are in proportion.
The segment connecting the midpoints of two sides of a triangle is parallel to the third side and is half as long.

The sum of the lengths of any two sides of a triangle must be greater than the third side

In a triangle, the longest side is across from the largest angle. In a triangle, the largest angle is across from the longest side.

The altitude to the hypotenuse of a right triangle is the mean proportional between the segments into which it divides the hypotenuse.
Each leg of a right triangle is the mean proportional between the hypotenuse and the projection of the leg on the hypotenuse.

If two sides of a triangle are congruent, the angles opposite these sides are congruent.

If two angles of a triangle are congruent, the sides opposite these angles are congruent.

Parallels

Corresponding Angles	If two parallel lines are cut by a transversal, then the pairs of corresponding angles are congruent If two lines are cut by a transversal and the corresponding angles are congruent, the lines are parallel.
Corresponding Angles	
Converse	
Alternate Interior Angles	If two parallel lines are cut by a transversal, then the alternate interior angles are congruent.
Alternate Exterior Angles	If two lines are cut by a transversal and the alternate interior angles are congruent, the lines are parallel. If two parallel lines are cut by a transversal, the interior angles on the same side of the transversal are supplementary
Interiors on Same Side	If two lines are cut by a transversal and the alternate interior angles are congruent, the lines are parallel.
Alternate Interior Angles	
Converse	
Alternate Exterior Angles	If two lines are cut by a transversal and the alternate exterior angles are congruent, the lines are parallel.
Converse	
Interiors on Same Side	If two lines are cut by a transversal and the interior angles on the same converse

Circles

Radius	In a circle, a radius perpendicular to a chord bisects the chord and the arc. In a circle, a radius that bisects a chord is perpendicular to the chord. If a line is tangent to a circle, it is perpendicular to the radius drawn to the point of tangency. In a circle, or congruent circles, congruent chords are equidistant from the center. (and converse) In a circle, or congruent circles, congruent chords have congruent arcs. (and converse) In a circle, parallel chords intercept congruent arcs In the same circle, or congruent circles, congruent central angles have congruent chords (and converse)
Chords	Tangent segments to a circle from the same external point are congruent
Tangents	In the same circle, or congruent circles, congruent central angles have congruent arcs. (and converse)
Arcs	An angle inscribed in a semi-circle is a right angle. In a circle, inscribed circles that intercept the same arc are congruent.
Angles	The opposite angles in a cyclic quadrilateral are supplementary. In a circle, or congruent circles, congruent central angles have congruent arcs.

