Power Functions Direct/Inverse Variation

Match each function rule to its corresponding graph, then write a sentence explaining the variation that relates x

and y. (Example: $y = \frac{6}{x^2}$: y varies inversely to the square of x with a constant variation of 6.)

3) y =
$$3\sqrt{x}$$
 Graph: _____

4)
$$y = \frac{5}{r^2}$$
 Graph: _____

5)
$$y = \frac{1}{x^3}$$
 Graph: _____

6)
$$y = \frac{1}{\sqrt{x}}$$
 Graph: _____

Answer the following direct/inverse variation problems.

Steps: 1. Plug in given values to the correct direct/inverse variation rule (make sure to include any exponents or radicals)

- 2. Solve for k and re-write the new rule with the k value
- 3. Plug in the 2nd given value and solve to find the missing value
- 7) If y varies inversely as the square of x and y = 9 when x = 2, find y when x = 3
- 8) If r varies directly as the square of t and r = 4 when $t = \frac{1}{2}$ find r when $t = \frac{1}{4}$
- 9) If y varies inversely as the square root of x and x = 1.21 when y = 0.44, find y when x = 0.16
- 10) If b varies directly as the cube of a and a = 3 when b = 54, find b when a = 6.
- 11) If y varies directly as the square root of x and x = 9 when y = 48, find x when y = 16.
- 12) If y varies inversely as the cube of x and y = 8 when x = 1, find y when x = 2.