Math 2: Triangle Similarity

Explain why the triangles are similar and write a similarity statement.

Verify that the triangles are similar.

3. $\triangle DEF$ and $\triangle JKL$

4. $\triangle MNP$ and $\triangle MRO$

Multi-Step Explain why the triangles are similar and then find each length.

5. AB

7. *PS*

9. Given: $\overline{AB} \parallel \overline{CD}$, AB = 2CD, AC = 2CEProve: $\triangle ABC \sim \triangle CDE$

Proof:		
	Statements	Reasons
	1. <i>ĀB</i> ∥ <i>CD</i>	1.
	2. ∠BAC ≅ ∠DCE	2.
	3. $AB = 2CD$,	3.
	AC = 2CE	
	4. $\frac{AB}{CD} = 2$, $\frac{AC}{CE} = 2$	4.
	$5. \frac{AB}{CD} = \frac{AC}{CE}$	5.
	6. AARC ~ ACDE	6.

10. Given: CD = 3AC, CE = 3BCProve: $\triangle ABC \sim \triangle DEC$

Proof:

Statements	Reasons
1. CD = 3AC, CE = 3BC	1.
2.	2. Div. Prop. of =
3.	3. Trans. prop. of =
4.	4. Def. of Vertical ∠'s
5.	5.

11. Measurement Jenny is 5 ft 2 in. tall. To find the height of a light pole, she measured her shadow and the pole's shadow. What is the height of the pole?

12. Surveying In order to measure the distance AB across the meteorite crater, a surveyor at S locates points A, B, C, and D as shown. What is AB to the nearest meter? nearest kilometer?

13. Given that $\triangle PQR \sim \triangle WXY$, find each ratio.

- a. perimeter of $\triangle PQR$ perimeter of \(\Delta WXY \)
- area of $\triangle PQR$
- area of △WXY
- c. How does the result in part a compare with the result in part b?

Find the perimeter of the given triangle.

- BC = 6, AC = 7, and DE = 3
- **14.** $\triangle DEF$, if $\triangle ABC \sim \triangle DEF$, AB = 5, **15.** $\triangle WZX$, if $\triangle WZX \sim \triangle SRT$, ST = 6, WX = 5, and the perimeter of $\triangle SRT = 15$

16. MULTI-STEP PROBLEM Use the following information about similar triangles $\triangle ABC$ and $\triangle DEF$.

The scale factor of $\triangle ABC$ to $\triangle DEF$ is 15:2.

The area of $\triangle ABC$ is 25x.

The area of $\triangle DEF$ is x - 5.

The perimeter of $\triangle ABC$ is 8 + y. The perimeter of $\triangle DEF$ is 3y - 19.

- **a.** Use the scale factor to find the ratio of the area of $\triangle ABC$ to the area of $\triangle DEF$.
- **b.** Write and solve a proportion to find the value of x.
- **c.** Use the scale factor to find the ratio of the perimeter of $\triangle ABC$ to the perimeter of $\triangle DEF$.
- **d.** Write and solve a proportion to find the value of y.
- e. Writing Explain how you could find the value of z if AB = 22.5 and the length of the corresponding side \overline{DE} is 13z - 10.