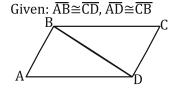

# **Proofs Involving Congruent Triangles**

First, let's analyze some proofs.

This is easy! All you have to do is explain in plain English what is going on in the proofs. We'll look at some examples first.

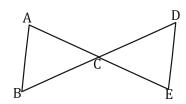

AE. 1.

Given:  $\overline{AB} \cong \overline{DE}$ ,  $\overline{AC} \cong \overline{DF}$ , and  $\angle A \cong \angle D$ 



| Statements                       | Reasons  |
|----------------------------------|----------|
| 1. <del>AB</del> ≅ <del>DE</del> | 1. Given |
| 2. <del>AC</del> ≅ <del>DF</del> | 2. Given |
| 3. ∠A≅∠D                         | 3. Given |
| 4. ΔABC≅ΔDEF                     | 4. SAS   |

#### AE. 2.




Prove: △ABD≅△BCD

| <u>Statements</u>                | <u>Reasons</u>        |
|----------------------------------|-----------------------|
| 1. <del>AB</del> ≅ <del>CD</del> | 1. Given              |
| 2. AD≅CB                         | 2. Given              |
| 3. BD≅BD                         | 3. Reflexive property |
| 4. ΔABD≅ΔCDB                     | 4. SSS                |
|                                  |                       |

## AE. 3.

Given:  $\overline{AE}$  Bisects  $\overline{BD}$ ,  $\angle B \cong \angle D$ 



Prove: △ABC≅△DBC

| Statements                                 | Reasons                |
|--------------------------------------------|------------------------|
| 1. ∠B≅∠D                                   | 1. Given               |
| 2. $\overline{AC}$ Bisects $\overline{BD}$ | 2. Given               |
| 3. <del>BC</del> ≅ <del>DC</del>           | 3. Definition of Bised |
| 4. ∠ACB≅∠DCE                               | 4. Vertical angles     |
| 5. ∆ABC≅∆DBC                               | 5. ASA                 |
|                                            |                        |

# Analysis:

Working backward we must ask the key question, "How can we show that two triangles are congruent?" The answer? A triangle congruence theorem like SSS, SAS, ASA, AAS or HL. This gives us B1:  $\triangle ABC \cong \triangle DEF$ , by some property, but which one? To find out, start working forward. Listing all of the given information gives us a pair of angles  $\angle A$  and  $\angle D$  sandwiched between a pair of congruent sides  $\overline{AB} \cong \overline{DE}$  and  $\overline{AC} \cong \overline{DF}$ . So this means we have  $\triangle ABC \cong \triangle DEF$  by the SAS theorem which is B2: and the proof is complete.

## Analysis:

Working backward, we must ask the key question "How can we show that two triangles are congruent?" The answer? A triangle congruence theorem like SSS, SAS, ASA, AAS or HL. This gives us B1:  $\triangle$ ABC $\cong \triangle$ BCD bys ome property, but which one? Then start working forward. Listing all of the given information gives us two pairs of sides  $\overline{AB}\cong \overline{CD}$  and  $\overline{AD}\cong \overline{CB}$ , but this is not enough. We need another pair of sides or an angle between them. Looking now at the diagram we have  $\overline{BD}\cong \overline{BD}$  as a shared line. So this brings us to say  $\triangle$ ABC $\cong \triangle$ BCD by SSS which is B1 and the proof is complete.

### Analysis:

Working backward we must ask the key question, "How can we show that two triangles are congruent?" The answer? A triangle congruence theorem like SSS, SAS, ASA, AAS or HL. This gives us B1:  $\triangle$ ABC $\cong$  $\triangle$ BCD by some property, but which one? Then start working forward. Listing all of the given information gives us a pair of angles  $\angle$ B and  $\angle$ D, and  $\overline{\text{BD}}$  and  $\overline{\text{AE}}$  bisects  $\overline{\text{BD}}$ . If AE bisects  $\overline{\text{BD}}$  then  $\overline{\text{BD}}$  is cut in half at C so  $\overline{\text{BC}}\cong\overline{\text{DC}}$ ! This is not enough though. Looking at the diagram we see vertical angles  $\angle$ ACB $\cong$  $\angle$ DCE, which gives us  $\triangle$ ABC $\cong$  $\triangle$ BCD by the property ASA . This is B1 and the proof is complete.